Ознакомьтесь с Условиями пребывания на сайте Форнит Игнорирование означет безусловное согласие. СОГЛАСЕН
ВХОД
 
 

Короткий адрес страницы: fornit.ru/24206
или fornit.ru/ax1-13-584

Нейроны эпизодической памяти

Использовано в предметной области:
Системная нейрофизиология (nan)
  • раздел: Реверберация возбуждений (nan)
  • раздел: Память эпизодов осознания (nan)

  • Используемый довод статьи (аксиома):
    Эпизодическая память помогает нам запомнить, «как пройти в библиотеку». Для этого информация должна перейти из кратковременной памяти в долговременную. Известно, что анатомически для этого нужны гиппокамп и кора больших полушарий. Концептуально возможны два варианта развития событий: сначала кратковременная память кодируется в гиппокампе, как более «низшем» центре мозга, после передается на долгосрочное хранение в кору полушарий и стирается из гиппокампа. Второй вариант: эпизодическая память, даже кратковременная, одновременно записывается и в гиппокамп, и в кору головного мозга, а уже в последней с течением времени закрепляется.
    Бывает так, что какое-то явление, или слово, или предмет вызывают в нас целую лавину воспоминаний. Например, увидев молнию, мы вспоминаем отпуск позапрошлым летом, когда было много гроз; или же мы погружаемся в воспоминания о детстве, узнав знакомый запах выпечки. Так происходит потому, что память хранит не просто какое-то событие, но и его контекст – мы не просто ели бабушкин пирог, мы ели его в доме, а дом был в деревне, а в деревне жили ещё какие-то наши знакомые и т. д. Если бы наш мозг не запоминал контекст, если бы память представляла собой просто отдельно взятые единицы информации, нам бы жилось намного труднее, даже просто в бытовом смысле.
    Вес уверенности: Вполне уверенно подтверждается независимыми исследователями

    Эпизодическая память помогает нам запомнить, «как пройти в библиотеку». Для этого информация должна перейти из кратковременной памяти в долговременную. Известно, что анатомически для этого нужны гиппокамп и кора больших полушарий. Концептуально возможны два варианта развития событий: сначала кратковременная память кодируется в гиппокампе, как более «низшем» центре мозга, после передается на долгосрочное хранение в кору полушарий и стирается из гиппокампа. Второй вариант: эпизодическая память, даже кратковременная, одновременно записывается и в гиппокамп, и в кору головного мозга, а уже в последней с течением времени закрепляется. Как показывают последние исследования, опубликованные в Science, правильный вариант скорее всего второй.

    Информация о том, какие области мозга нужны для памяти, начали появляться с 1950-х годов. Например, пациент с поврежденным гиппокампом не мог формировать новые воспоминания, но сохранял старые. Из этого следует вывод, что гиппокамп нужен для образования, но не для сохранения памяти. Дальнейшие исследования пациентов с амнезией показали, что и кора больших полушарий нужна для сохранения памяти. 

    Загвоздка состояла в том, как на молекулярном уровне проследить цепочку событий, ведущих к образованию памяти. Как спланировать эксперимент, достаточно очевидно, но технически осуществить отнюдь непросто. Поэтому недавние исследования из MIT читаются как путеводитель по последним методам нейротехнологий — тут и оптогенетика, и кальциевая визуализация in vivo, и мечение клеток на основе их активности.

    С помощью этих методов ученые вначале определили энграммы, которые возникают у мышей при чувстве страха. Энграммы — это «след» в мозге, нейронная цепочка, которая возникает при формировании памяти. Мышей помещали в камеру, где их подвергали электрическому удару. В мозге при этом образовывалась энграмма, включающая в себе определенные нейроны гиппокампа, префронтальной зоны коры и миндалевидного тела (эта область мозга ответственна за эмоции).

    Когда через день мышей помещали обратно в камеру, то мыши в страхе замирали, при этом из энграмы активировались только нейроны гиппокампа, нейроны коры не возбуждаются. Если же вызвать страх искусственным (более сильным) путем — активировав нейроны гиппокампа оптогенетически, с помощью света — то нейроны коры полушарий из энграммы тоже возбудятся. Вывод из этого такой: первые, краткосрочные воспоминания сохраняются не только в гиппокампе, но и в клетках коры, но в коре они еще в незрелой форме (поэтому и надо мощный сигнал, чтобы эти воспоминания активировать).

    Через две недели нейроны коры созревали, менялась их анатомия и физиологические свойства, а нейроны из энграммы гиппокампа, наоборот, замолкали. Теперь уже у мышей, замирающих от страха при виде «камеры пыток» активировались в первую очередь клетки из энграммы коры, для этого гиппокамп был не нужен. Но в последнем «остатки» памяти всё же сохранялись: если активировать нейроны гиппокампа, возбуждалась вся нейронная цепочка энграмы, включая клетки коры.

    Получается, что память кодируется параллельно и в гиппокампе, и в коре большого мозга. Со временем, баланс смещается в сторону клеток коры – сигнал становится сильнее, а в гиппокампе слабее. К сожалению, нынешние методы позволяют следить за развитием энграм только 20 дней. Учитывая, что в гиппокампе кодируются очень детальные черты памяти, а в коре сохраняются общие черты воспоминания, было бы интересно узнать, можно ли вспомнить (хотя бы чисто теоретически), какого же цвета была машина на дороге по пути в библиотеку 15 лет назад.

     

    Как воспоминания связываются друг с другом

    За связность воспоминаний в мозге отвечают особые нейроны, которые можно назвать хранителями информационного контекста.

    Бывает так, что какое-то явление, или слово, или предмет вызывают в нас целую лавину воспоминаний. Например, увидев молнию, мы вспоминаем отпуск позапрошлым летом, когда было много гроз; или же мы погружаемся в воспоминания о детстве, узнав знакомый запах выпечки. 

     

     
    Гиппокамп мыши и его энграммные клетки (окрашены зелёным). (Фото Dheeraj Roy / MIT)

    В статье в Neuron Судзуми Тонегава (Susumu Tonegawa) и его коллеги из Массачусетского технологического института пишут о том, что связь воспоминаний обеспечивают так называемые энграммные нейроны. Тонегава – нобелевский лауреат за открытия в области иммунологии, ставший выдающимся современным нейробиологом. Одно из крупнейших достижений его лаборатории – открытие энграммных клеток в центре памяти гиппокампе. 

     

    Под энграммой понимают след, оставленный раздражителем; если говорить о нейронах, то повторяющийся сигнал – звук, запах, некая обстановка и т. д. – должны провоцировать в них некие физические и биохимические изменения. Если стимул потом повторится, то «след» активируется, и клетки, в которых он есть, вызовут из памяти всё воспоминание целиком. Иными словами, у нас энграммные («ключевые») нейроны отвечают за доступ к записанной информации, а чтобы сами они заработали, на них должен подействовать ключевой сигнал; очевидно, что сами такие клетки должны уметь как-то сохранять в себе информацию о тех или иных стимулах.

    Про энграммные клетки мы неоднократно писали. В новых экспериментах Тонегава и его сотрудники обнаружили новые особенности в работе энграммных нейронов. Когда подопытные мыши повторно попадали в запомнившуюся им обстановку, энграммные клетки через пять минут становились легковозбудимыми: в течение часа они активнее отзывались на различные стимулы; позже, спустя два часа, клетки успокаивались и реагировали на стимулы, как обычно. Исследователям удалось выяснить, что возбудимость нейронов повышается благодаря тому, что в мембранах нейронов временно становится меньше особых ионных каналов, которые пропускают калий – перераспределяя положительные ионы калия между наружной и внутренней стороной клеточной мембраны, эти каналы делают клетку менее возбудимой.

    Чтобы показать, как повышенная возбудимость энграммных клеток влияет на память, авторы работы поставили с мышами два эксперимента, в которых мыши должны были вспомнить нечто из прошлого опыта. Но воспоминания у них будили разным манером, в одном случае это была память различающая (воспоминания должны были помочь отличить одно от другого), а в другом – память дополняющая (мозг должен был дополнить воспоминаниями то, что увидел).

    В первом случае мыши в определённом окружении несколько раз получали мягкий удар током, так что они должны были запомнить это окружение как опасное. На следующий день некоторых мышей снова сажали в ту же обстановку – и энграммные клетки у них демонстрировали временную повышенную возбудимость. Затем некоторых из них спустя пять минут сажали в другую клетку, где что-то было новым, а что-то было похоже на прежнюю, неприятную клетку, где их вчера били током и которую им пришлось вспомнить буквально пять минут назад. Некоторых же тоже сажали в «смешанную» клетку, но только спустя три часа после напоминания о вчерашнем. Вдобавок к этим была ещё третья группа мышей, которым после «электрического» обучения ничего не давали вспомнить, а сразу сажали в смешанную клетку.

    В результаты мыши из третьей группы, которым заново ни о чём не напоминали, в смешанной клетке демонстрировали стресс, замирая на месте, как делают грызуны, почувствовав опасность. Точно так же замирали на месте те, которым напоминали про первую клетку, но в смешанную клетку сажали спустя три часа после напоминания. И те, и другие видели в этой смешанной клетке отдельные признаки вчерашних неприятностей, и пугались.

    Напротив, те мыши, которым напоминали электрическую клетку и всего через пять минут сажали в смешанную клетку, ничего не пугались. Энграммные клетки, как мы говорили, реагируют на знакомые обстоятельства, через пять минут становясь легковозбудимыми и сохраняя повышенную возбудимость на час. Именно они помогали мышам понять, что хотя в новой обстановке есть элементы электрической клетки (в которой они сидели пять минут назад), это всё же не то же самое, и потому бояться нечего.

    В другом эксперименте, на дополняющую память, мышам давали десять минут, чтобы обследовать окружающую обстановку; током их пока что не били. На следующий день их возвращали в ту же обстановку и давали мягкий электрический удар. Часть грызунов тут же из этой клетки забирали, а других оставляли ещё на три минуты, чтобы они её вспомнили получше. Затем их всех из клетки забирали, после чего некоторых через пять минут сажали в неё же – и снова били током, а часть сажали – через три часа, снова для удара током. Зная, как ведут себя энграммные клетки, можно предположить, что те животные, которые получали повторный удар через пять минут, запоминали клетку как неприятное место: активировавшиеся через пять минут энграммные нейроны запоминали контекст, и в этот контекст входил электрический удар.

    Через три дня всех мышей опять сажали в ту же клетку. Те, которые получали всего один удар током, на сей раз почти не замирали на месте – одного удара было недостаточно, чтобы сформировать плохое воспоминание. Точно так же почти не боялись и те, которые получали второй удар, но получали его через три часа – их энграммные клетки успевали успокоиться. А вот те, которых второй раз били током спустя пять минут, впадали в оцепенение – то есть они запоминали прошлые неприятности очень хорошо, несмотря на то, что удар током они испытывали всего два раза.

    В обоих экспериментах важно то, что сначала мышей помещали в знакомый контекст, чтобы раскачать энграммные клетки. Становясь легковозбудимыми, они помогали запомнить новые события, которые происходили с мышами. То есть энграммные нейроны можно с определённой долей условности назвать хранителями контекста, которые обеспечивают связность воспоминаний. И тут, конечно трудно удержаться от искушения помечать о том времени, когда угасающие воспоминания можно будет воскрешать, стимулируя в мозге этих самых «хранителей контекста», связывающих воедино самые разные события нашей жизни.

    Автор: Кирилл Стасевич

    Источник: Наука и жизнь (nkj.ru)17 декабря 2018



    Источник: Энграммы или как пройти в библиотеку
    Дата создания: 17.12.2018
    Последнее редактирование: 16.01.2024

    Относится к аксиоматике: Системная нейрофизиология.

    Оценить cтатью >>

    Другие страницы раздела "Реверберация возбуждений":
  • Сохранение в коре следов прежних раздражений
  • Ритмы мозга
  • Реверберационная цикличность между нервными клетками мозга
  • Циркуляция нервных импульсов
  • Клеточная организация памяти
  • Вспоминаемые образы
  • Поддержание активности
  • Самоподдерживающаяся активность
  • Реверберация
  • Механизм субъективизации объектов внимания
  • Принцип двусторонних связей
  • Роль реверберации
  • Реверберация во время сна отражает дневные воспоминания
  • Дополнительный список статей и исследований по реверберации
  • Концепция временной организации памяти
  • Отдыхающий мозг формирует долговременную память
  • Кольцевые структуры лимбической системы
  • Схема основных внутренних связей лимбической системы
  • Реверберация и ритмы мозга
  • Реверберация в нейросетях
  • Длительность следовых процессов
  • Консолидация
  • Циклы А. Иваницкого забирают энергию в покое
  • Реверберация в лобной коре
  • Долговременное запоминание образов происходит за счет реверберации
  • Формирование эпизодической памяти происходит за счет реверберации
  • Запоминание временно исчезнувшего стимула
  • Колебания активности нейронов с частотой примерно четыре раза в секунду заставляют нас каждый раз отвлекаться
  • Пролонгирование возбдужения
  • Имитационные условные рефлексы. Импринтинг

    Чтобы оставить комментарии нужно авторизоваться:
    Авторизация пользователя