Чем выше приспособленность, тем вреднее новые мутации

Пекарские дрожжи Saccharomyces cerevisiae — классический модельный объект для эволюционных исследований

Рис. 1. Пекарские дрожжи (Saccharomyces cerevisiae) — классический модельный объект для эволюционных исследований. Фото с сайта en.wikipedia.org

В эволюционных экспериментах на бактериях и дрожжах было показано, что по мере роста приспособленности к данным условиям среды способность организмов к дальнейшей адаптации, как правило, снижается. Это проявляется в том, что вновь возникающие полезные мутации приносят в среднем тем меньше пользы, чем выше текущее значение приспособленности. Новые эксперименты на дрожжах, проведенные американскими биологами, показали, что аналогичное правило существует и для вредных мутаций: одни и те же мутации в среднем оказываются вреднее для генотипов с более высокой приспособленностью. Зависимость эффекта мутации от текущей приспособленности может даже пересекать нулевую отметку: существуют мутации, полезные для штаммов дрожжей с низкой приспособленностью, но при этом вредные для штаммов с высокой приспособленностью. Таким образом, по мере роста приспособленности снижается не только способность организмов к дальнейшим улучшениям, но и их устойчивость к вредным мутациям.

«Все счастливые семьи похожи друг на друга, каждая несчастливая семья несчастлива по-своему». Некоторые ученые видят в этой фразе из романа Толстого отражение важного общего принципа, состоящего в том, что существует гораздо больше способов испортить сложную функциональную систему, чем улучшить ее (см. Принцип Анны Карениной). В биологии это проявляется, в частности, в том, что среди случайных мутаций обычно гораздо больше вредных (снижающих приспособленность), чем полезных. При этом вероятность того, что случайная мутация окажется полезной, должна, по идее, зависеть от текущей приспособленности (или от благоприятности условий, что, по сути, то же самое). Если всё и так идеально, у случайной мутации практически нет шансов повысить приспособленность, но если приспособленность организма низкая (условия неблагоприятны), то эти шансы должны повышаться.

Справедливость этих абстрактных рассуждений была наглядно подтверждена в нескольких эволюционных экспериментах на микроорганизмах, в том числе в знаменитом долгосрочном эксперименте Ричарда Ленски (см.: Новые результаты долгосрочного эволюционного эксперимента: приспособленность подопытных бактерий продолжает расти, «Элементы», 23.12.2013). Выяснилось, что по мере роста приспособленности организмов к данным условиям среды средняя полезность вновь возникающих полезных мутаций имеет обыкновение снижаться. Это явление назвали «эпистазом убывающей доходности» по аналогии с экономическим законом убывающей доходности. Эпистаз — это влияние одних генов на фенотипические проявления других. В данном случае имеется в виду, что уже закрепившиеся в геноме полезные мутации делают последующие полезные мутации в среднем менее полезными.

Аналогичные результаты были получены и на некоторых эукариотах (S. Schoustra et al., 2016. Diminishing-returns epistasis among random beneficial mutations in a multicellular fungus). Об одном таком исследовании, проведенном американскими биологами на пекарских дрожжах Saccharomyces cerevisiae (рис. 1), рассказано в новости Предсказуемый рост приспособленности достигается непредсказуемыми путями («Элементы», 30.06.2014). Оказалось, что у дрожжей, как и у бактерий, средняя полезность вновь возникающих мутаций, а значит и приспособляемость (adaptability) организмов, снижается по мере роста приспособленности. При этом для дрожжей в большей степени характерен так называемый глобальный эпистаз (в противовес специфическому эпистазу, который, возможно, более свойственен бактериям). Это значит, что у дрожжей полезность мутации зависит прежде всего от общей приспособленности организма и лишь во вторую очередь — от того, какие именно мутации, закрепившиеся ранее, обеспечивают эту приспособленность (E. R. Jerison et al., 2017. Genetic variation in adaptability and pleiotropy in budding yeast).

Если о влиянии приспособленности на полезность полезных мутаций уже кое-что известно, то в вопросе о том, как приспособленность влияет на вредность вредных мутаций, ясности меньше. Если отталкиваться от того же «принципа Анны Карениной», то можно предположить, что чем совершеннее организм, тем с большей вероятностью случайное изменение генома причинит ему сильный вред. Если же организм не столь совершенен, то эффект той же самой мутации, возможно, будет менее драматичным. Конечно, в биологии такие общие соображения немногого стоят без экспериментальных подтверждений. Тем более, что некоторые данные указывают скорее на обратную тенденцию (см.: Вредные мутации в геноме усиливают влияние друг друга, «Элементы», 24.05.2017).

В новом исследовании, результаты которого опубликованы в журнале Science, американские ученые, ранее показавшие снижение полезности полезных мутаций с ростом приспособленности у дрожжей (Предсказуемый рост приспособленности достигается непредсказуемыми путями, «Элементы», 30.06.2014), попытались внести ясность в вопрос о влиянии приспособленности на вредность вредных мутаций.

В своих экспериментах авторы использовали гаплоидные штаммы дрожжей S. cerevisiae, полученные путем бесполого размножения из генетически разнообразного потомства от скрещивания двух сильно различающихся линий. Генетическое разнообразие подопытных штаммов обеспечивается тем, что у каждого потомка аллели, характерные для двух родительских линий, присутствуют в разных комбинациях. Эти штаммы были детально изучены ранее (J. S. Bloom et al., 2013. Finding the sources of missing heritability in a yeast cross). В тех условиях, в которых авторы выращивали дрожжи, приспособленность подопытных штаммов (оцениваемая по скорости роста) варьирует в широких пределах: самые приспособленные растут на 22,5% быстрее наименее приспособленных.

В геномы подопытных дрожжей при помощи транспозонного мутагенеза (Transposon mutagenesis) были внесены различные мутации. Для этого использовались специально разработанные для таких исследований плазмиды, обеспечивающие встраивание чужеродного фрагмента ДНК с уникальным нуклеотидным «штрих-кодом» (см.: Ранние этапы адаптации предсказуемы, поздние — случайны, «Элементы», 03.03.2015) в определенное место генома S. cerevisiae (A. Kumar et al., 2004. Large-Scale Mutagenesis of the Yeast Genome Using a Tn7-Derived Multipurpose Transposon). Ген, в который (или рядом с которым) встраивается чужеродный фрагмент, обычно выходит из строя или его функция сильно нарушается. Мутации вносились поодиночке. В итоге удалось получить множество штаммов с одной и той же привнесенной мутацией, но с разным генетическим «фоном», а также множество штаммов с одним и тем же исходным генотипом, но с разными привнесенными мутациями.

Эксперимент был проведен в двух вариантах. В первом случае использовали небольшое число исходных генотипов (18), но зато очень много разных мутаций (1147). Во втором случае взяли меньше мутаций (91), но зато испытали их действие на большем количестве генотипов (163).

Авторы оценили влияние каждой мутации на приспособленность (скорость роста) каждого генотипа. Результаты в обоих экспериментах получились похожие, но второй вариант (с большим числом исходных генотипов) позволил провести более строгий математический анализ искомой зависимости эффекта мутации от исходной приспособленности генотипа. Результаты второго эксперимента показаны на рис. 2.

Рис. 2. Результаты эксперимента

Рис. 2. Результаты эксперимента, в котором было проверено влияние 91 мутации на приспособленность 163 генотипов, различающихся по своей исходной приспособленности. А — количественное распределение эффектов мутаций для каждого из 163 штаммов; Б — усредненные распределения эффектов мутаций для 25% самых приспособленных штаммов (красная линия) и 25% наименее приспособленных (синяя линяя). Видно, что красное распределение смещено влево (в сторону усиления вредных эффектов) относительно синего. Это значит, что мутации, как правило, оказываются более вредными для генотипов с высокой приспособленностью; В — зависимость усредненного эффекта всех проверенных мутаций от исходной приспособленности генотипа; Г — рост дисперсии (ширины распределения) эффектов мутаций с ростом исходной приспособленности; Д — зависимость коэффициента асимметрии распределения эффектов мутаций от исходной приспособленности генотипа: график показывает, что чем выше исходная приспособленность, тем сильнее это распределение «вытянуто» влево, то есть в сторону более вредных эффектов. Изображение из обсуждаемой статьи в Science

Как видно из рисунка, мутации, нарушающие работу тех или иных генов, в среднем оказываются тем вреднее, чем выше была исходная приспособленность генотипа. Таким образом, результаты согласуются с «принципом Анны Карениной»: чем приспособленнее генотип, тем он уязвимее, тем легче его испортить. Ну а генотипам с низкой приспособленностью («несчастливым семьям») уже более-менее всё равно: можно еще что-нибудь в них нарушить — намного хуже им от этого не станет.

Более детальный анализ показал, что среди изученных мутаций встречаются разные варианты зависимости эффекта мутации от генетического контекста. У большинства мутаций эта зависимость похожа на среднестатистическую (показанную на рис. 2), то есть хорошо приспособленным генотипам эти мутации вредят сильно, а плохо приспособленным — слабо. Но встречаются и другие варианты. Например, существуют вредные мутации, вредность которых не зависит от исходной приспособленности генотипа, а также полезные мутации, чья полезность снижается по мере роста исходной приспособленности (это как раз и есть вышеупомянутый «эпистаз убывающей доходности»). Есть даже такие мутации, которые слабо приспособленным генотипам полезны, а хорошо приспособленным — вредны. Так ведет себя, например, вставка, повреждающая ген RPL16A, кодирующий один из рибосомных белков.

Эффекты большинства исследованных мутаций сильнее зависят от «глобального эпистаза» (то есть просто от исходной приспособленности генотипа), чем от «специфического эпистаза» (то есть от наличия в геноме каких-то конкретных аллелей). Но всё же специфический эпистаз тоже имеет место. Для многих мутаций удалось найти конкретные гены, аллельное состояние которых заметно влияет на эффект мутации (наряду с общей приспособленностью и независимо от нее). Кроме того, ученые заметили, что функции многих генов, вредность мутаций в которых особенно быстро растет с ростом общей приспособленности (а также генов, аллельное состояние которых заметно влияет на эффекты изученных мутаций), связаны с рибосомами и трансляцией (синтезом белка). По-видимому, это значит, что для оптимальной приспособленности (то есть для быстрого размножения) дрожжей в условиях эксперимента важна тонкая настройка системы белкового синтеза. Если все гены, влияющие на работу этой системы, «настроены» оптимальным образом, а их рабочие характеристики точно подогнаны друг к другу, то дрожжи размножаются максимально быстро. Но если хоть один из элементов системы забарахлил, то размножение сразу застопоривается. После этого становится уже не так важно, насколько точно подогнаны друг к другу остальные элементы.

В заключительной части статьи авторы рассуждают о возможных эволюционных следствиях найденной закономерности. Получается, что приспособляемость (эволюционный потенциал) популяции закономерно снижается по мере приближения к оптимуму (пику на «ландшафте приспособленности», см. Fitness landscape; смысл этого понятия разбирается в новости Расширение белковой вселенной продолжается, «Элементы», 24.05.2010). Происходит это не только за счет уменьшения пользы от полезных мутаций, но и за счет снижения толерантности к вредным мутациям. Чем выше по склону «ландшафта приспособленности», тем меньше остаётся путей наверх, и к тому же эти подъемы становятся всё более пологими (что соответствует «эпистазу убывающей доходности»). Спуски, наоборот, становятся всё круче — это соответствует выявленной в обсуждаемой работе зависимости (крутизна спуска здесь — это вредность мутации, а достигнутая высота — текущая приспособленность).

Авторы обращают внимание на то, что помимо обычного естественного отбора, работающего на индивидуальном уровне и всегда стремящегося повысить приспособленность, существует еще такое «неканоническое» явление, как отбор второго порядка на приспособляемость или эволюционную перспективность (J. L. Payne, A. Wagner, 2019. The causes of evolvability and their evolution). Его реальность была продемонстрирована в нескольких работах, в том числе в эксперименте Ленски (об этом рассказано в новости В долгосрочном эволюционном эксперименте выявлен отбор на «эволюционную перспективность», «Элементы», 25.03.2011).

Если приспособляемость (которая складывается из максимизации пользы полезных мутаций и минимизации вреда вредных) может эволюционировать под действием «отбора второго порядка», то этот процесс, по-видимому, должен вступать в противоречие с «отбором первого порядка». Отбор на приспособленность пытается загнать эволюционирующую популяцию на ближайший пик, невзирая на дальнейшие перспективы. Отбор на приспособляемость, если он реален, должен предпочитать на ландшафте приспособленности такие места, откуда доступны более крутые и высокие подъемы, а спуски менее круты. Встречаются ли в реальной эволюции какие-то компромиссы между текущей приспособленностью и эволюционной перспективностью, и вносят ли такие компромиссы заметный вклад в наблюдаемое «несовершенство» организмов и адаптаций, покажут дальнейшие исследования.

Источник: Milo S. Johnson, Alena Martsul, Sergey Kryazhimskiy, Michael M. Desai. Higher-fitness yeast genotypes are less robust to deleterious mutations // Science. 2019. V. 366. P. 490–493. DOI: 10.1126/science.aay4199.

См. также:
1) Предсказуемый рост приспособленности достигается непредсказуемыми путями, «Элементы», 30.06.2014.
2) В долгосрочном эволюционном эксперименте выявлен отбор на «эволюционную перспективность», «Элементы», 25.03.2011.
3) Новые результаты долгосрочного эволюционного эксперимента: приспособленность подопытных бактерий продолжает расти, «Элементы», 23.12.2013.
4) Ранние этапы адаптации предсказуемы, поздние — случайны, «Элементы», 03.03.2015.

Александр Марков


16
Показать комментарии (16)
Свернуть комментарии (16)

  • Bedal  | 28.10.2019 | 09:21 Ответить
    Классическая картина попадания в локальный оптимум в расчётных алгоритмах. Теплокровные, похоже, ровно для снижения вероятности застрять в локальном оптимуме - "изобрели" любовь.
    Ответить
    • Teodor7 > Bedal | 28.10.2019 | 09:44 Ответить
      Застрять в локальном оптимуме мешает динамичность ландшафта.
      Ответить
      • Bedal > Teodor7 | 28.10.2019 | 10:00 Ответить
        Как раз наличие не-гладкого ландшафта и приводит к локальным оптимумам. То, что попадание в локальный оптимум произошло - следует из всей статьи, из фиксации "высокой приспособленности". Это означает, что в рассматриваемых случаях ландшафт был недостаточно динамичен.
        Ответить
        • Teodor7 > Bedal | 28.10.2019 | 10:27 Ответить
          В рассматриваемых случаях не было теплокровных.
          Ответить
          • Bedal > Teodor7 | 28.10.2019 | 10:34 Ответить
            Любовь, подбор партнёра с нарушением правил полового отбора, есть внесение ошибки для выхода из локального оптимума. Конечно, это не единственный способ преодоления проблемы. Для одноклеточных решение даёт (судя по тому, что они до сих пор существуют :-) количество экземпляров. Всегда есть достаточное количество вариаций генома, что и обеспечивает решение задачи.
            Ответить
            • nal > Bedal | 28.10.2019 | 12:06 Ответить
              "Любовь" (конъюгацию) у дождей никто не отменял.
              https://elementy.ru/novosti_nauki/432199/Evolyutsiya_polovogo_razmnozheniya_u_drozhzhey_nadstroyka_menyaetsya_bazis_ostaetsya
              Ответить
              • Bedal > nal | 28.10.2019 | 13:55 Ответить
                Неверно. Там речь о половом размножении, до любви весьма далеко. При наличии полового размножения появляется (но позже) половой отбор (вот сильно не уверен, что у дрожжей он есть). И ещё позже появляется любовь как нарушение правил полового отбора.

                Говоря традиционным для этой области языком, низкая скорость приспособления приводит к вымиранию при быстрых изменениях среды.
                Говоря языком вычислений, естественный отбор обладает низкой скоростью сходимости. Причина в том, что отбор происходит путём вымирания, то есть с отставанием на поколение.

                Половое размножение ускоряет сходимость, так как позволяет использовать бОльшую базу статистики.
                Половой отбор ещё больше ускоряет, так как отбор происходит ДО появления нового поколения.

                Но ускорение сходимости приводит к росту вероятности попасть в локальный оптимум (грубый пример: всего-то пару лет было тепло, а уже все стали теплолюбивыми). В вычислениях при достижении оптимума вносят ошибку в исходные данные и проводят ещё одну или несколько итераций. Как бы толкают шарик, успокоившийся в неглубокой лунке. Если оптимум был локальный - шарик выкатится из лунки и покатится дальше по склону.
                Так и любовь которая "зла, полюбишь и козла" является внесением ошибки в половой отбор и тем самым позволяет не застревать в оптимумах, случись этот оптимум локальным - "все умрут а я останусь".
                Почему я написал о теплокровных - по малости моих знаний. У птиц есть механизмы нарушения правил полового отбора (воробьиная свадьба, например), но не точно то, что у людей называется любовью (и что, похоже, характерно для млекопитающих вообще).
                Ответить
            • PavelS > Bedal | 28.10.2019 | 15:44 Ответить
              Эмоциональная сфера всегда весьма эгоистична, любят молодых и красивых, никакого нарушения правил отбора тут нет. Здесь есть несколько стремление эволюции заставить мужчин остановиться на единыжды сделанном выборе (фиксация в виде заключения брака, моногамия) в ущерб продолжительному поиску.
              Ответить
              • Bedal > PavelS | 28.10.2019 | 16:04 Ответить
                Беда с этими гуманитарными терминами :-)
                Влечение к молодым и красивым - как раз и есть обычный половой отбор. А любовь возникает как нарушение этих правил. К молодому, к некрасивому и т.п. У крыс, вроде бы, это запускается по нестандартному запаху. У людей, по крайне мере часто, по запрету. Если Вы с этой точки зрения взглянете на литературные описания любви, на народные поговорки - очень может быть, согласитесь с написанным мной.
                Ответить
                • Юрий Фёдоров > Bedal | 29.10.2019 | 16:41 Ответить
                  Я! Я соглашусь!))
                  Черт знает что с этой любовью! Полная чепуха!))
                  Ответить
  • Teodor7  | 28.10.2019 | 09:42 Ответить
    "Подъемы становятся всё более пологими... спуски, наоборот, становятся всё круче"
    Принцип обратимости это утверждение отвергает. Просто достигнут оптимум и все мутации становятся вредными.
    Ответить
  • OSAO  | 28.10.2019 | 12:20 Ответить
    Биологическое приспособление многофакторно, процессы там не всегда очевидны. Для простоты представим себе механическую систему, в которой объекты тоже будут "бороться за выживание".
    Итак, рабочая зона, типа уплощенной упаковки от яиц, заполнена объектами разной формы. Зона периодически наклоняется туда-сюда, и выживет тот, кто быстрее других окажется в ближайшей ямке. Упростим ещё раз: борются только кубики, мутирующие в шарики. То есть, имеет место специфический эпистаз.
    Понятно, что у какого-то счастливого кубика может возникнуть серия положительных мутаций, и его форма приблизится к шару. Тогда в области между сфероидом и шаром будет наблюдаться «эпистаз убывающей доходности».
    И, наоборот, чем ближе поверхность объекта к шару, тем вреднее новые мутации в виде, например, выпирающих углов. Принцип Анны Карениной, понимаете ли... "Если же объект не столь совершенен, то эффект той же самой мутации, возможно, будет менее драматичным". Конечно, если на кубе вдруг выпрет наружу 9-й угол, то "намного хуже ему от этого не станет".
    Ответить
  • Teodor7  | 28.10.2019 | 12:43 Ответить
    Еще вот такое соображение. Подобные опыты нарушают принцип историзма. В природе бактерии долгое время эволюционируют, приспосабливаются к условиям, потом условия меняются, дрейфуют и начинается приспособление к этим условиям.
    А в подобных опытах штаммы бактерий высеваются первоначально на среды, далекие к условиям их предыдущего "исторического" оптимума. В результате имеем экзотическую динамику эволюции. Такого рода опыты подобны эволюции в условиях экологических катастроф.
    Ответить
  • nan  | 28.10.2019 | 14:57 Ответить
    >>вновь возникающие полезные мутации приносят в среднем тем меньше пользы, чем выше текущее значение приспособленности.
    Тут – формальное противоречие: если последствие мутации уже оценено как полезное для организма, то это уже не зависит от сложности адаптивной системы. Лучше было сказать: со сложностью адаптивных систем вероятность того, что мутация окажется полезной становится меньше. И такое утверждение очевидно верное: чем сложнее система, тем меньше вероятности, что случайное изменение в чем-то окажется полезным потому, что для адаптивности такой системы требуются и более сложные, направленные механизмы, а не мутации чего-то базового.
    Ответить
  • TotalKek  | 28.10.2019 | 15:43 Ответить
    Эксперимент конечно забавный, но его значимость в обобщении биологии имхо мала.
    И вообще, сами понятия "приспособленность" и "вредность" весьма узко определены в статьях подобного тренда.
    Например, новые мутации возможно помогут клетке выжить в будущей изменившейся окр.среде. Добавлять ли это слагаемое в "приспособленность"?
    И считать ли "вредность" и "снижение плодовитости" равными терминами ?

    Может быть как раз быстроразмножающийся штамм вреден для будущего микробиологического социума из-за того, что он вытесняет и убивает другие штаммы клеток. Это как рак у многоклеточного.

    В общем понятийная сеть терминов имхо переупрощена , и можно сказать , что исследователи застряли в своём информационном минимуме. Другое дело, что вроде как нету таких технологий, которые бы систематизировали исследовательский процесс в котором очень много объектов зависят от большого количества других объектов. Это как нейросеть, где каждый нейрон имеет входы от всех других нейронов. Возможно там можно как-то кластеризовать сеть, и называть вещи своими именами, а не переупрощать общие\масштабные термины.
    Ответить
    • Юрий Фёдоров > TotalKek | 30.10.2019 | 02:44 Ответить
      Да! Критерий "скорость" - вовсе не синонимичен критерию "приспособленность".
      А здесь все построено на том, что вместо первого пишут второе.
      Чуть-чуть вначале мягко-мягко они приравниваются без нажима, а потом - пошло-поехало: речь ведется только о приспособленности и ни о чем более.
      О скорости более ни слова.

      Кого-то за дурачков держат?
      Создается такое ощущение. Или, как минимум, может создаться))
      Ответить
Написать комментарий

Последние новости


Деревянные копья из Шёнингена
Неандертальцы жили в «деревянном» веке

Питер Хиггс во время лекции в Эдинбургском университете
Тихий физик из Эдинбурга: памяти Питера Хиггса

«Камертон» Хаббла
«Джеймс Уэбб» обнаружил в ранней Вселенной слишком много регулярных галактик

Наконечники стрел из SM1
Рыбалка помогла древним африканцам пережить извержение супервулкана Тоба

Элементы

© 2005–2024 «Элементы»